organic compounds

 $\mu = 0.62 \text{ mm}^{-1}$

 $0.35 \times 0.25 \times 0.12 \text{ mm}$

8030 measured reflections

4016 independent reflections 2376 reflections with $I > 2\sigma(I)$

T = 291 K

 $R_{\rm int} = 0.036$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Methyl 2,2-dimethoxy-5,5-bis(methylsulfanyl)-3-oxopent-4-enedithioate

Mohammad Hassan Ghorbani

Falavarjan Branch, Islamic Azad University, Falavarjan, Isfahan, Iran Correspondence e-mail: ghorbani@iaufala.ac.ir, moha_ghorbani@yahoo.com

Received 12 February 2012; accepted 14 March 2012

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.003 Å; R factor = 0.037; wR factor = 0.085; data-to-parameter ratio = 25.1.

In the title molecule, $C_{10}H_{16}O_3S_4$, a short intramolecular $S \cdots O(=C)$ distance [2.726 (2) Å] indicates the presence of a nonbonding attractive interaction. In the crystal, molecules are linked into centrosymmetric dimers *via* weak intermolecular $C-H\cdots O$ and $S\cdots S$ [3.405 (3) Å] interactions. These dimers are linked by further weak $C-H\cdots O$ interactions into columns along the *a* axis.

Related literature

For background and synthetic details, see: Mahata *et al.* (2003). For related structures and $S \cdots O$ interactions, see: Ángyán *et al.* (1985, 1987); Dixit *et al.* (1995); Hamilton & LaPlaca (1964). For van der Waals radii, see: Ángyán *et al.* (1987). For $S \cdots S$ interactions, see: Guru Row & Parthasarathy (1981); Puranik *et al.* (1986).

Experimental

Crystal data

b = 10.404 (5)
c = 11.151 (5)
$\alpha = 70.426$ (5
$\beta = 88.549$ (5

 $\gamma = 76.081 (5)^{\circ}$ $V = 753.4 (7) \text{ Å}^3$ Z = 2Mo K α radiation

Data collection

Stoe IPDS II Image Plate
diffractometer
Absorption correction: multi-scan
[MULABS (Blessing, 1995) in
PLATON (Spek, 2009)]
$T_{\min} = 0.927, T_{\max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ 160 parameters $wR(F^2) = 0.085$ H-atom parameters constrainedS = 0.81 $\Delta \rho_{max} = 0.29$ e Å $^{-3}$ 4016 reflections $\Delta \rho_{min} = -0.35$ e Å $^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C6-H6A\cdots O3^{i}$	0.96	2.64	3.523 (3)	153
$C7 - H7C \cdots O3^{ii}$	0.96	2.61	3.276 (4)	127
$C8-H8A\cdots O3^{iii}$	0.96	2.64	3.575 (3)	164

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x + 1, y, z; (iii) -x + 1, -y, -z + 1.

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5419).

References

- Ángyán, J. G., Kucsman, Á., Poirier, R. A. & Csizmadia, I. G. (1985). J. Mol. Struct. (Theochem.), 123, 189–201.
- Ángyán, J. G., Poirier, R. A., Kucsman, Á. & Csizmadia, I. G. (1987). J. Am. Chem. Soc. 109, 2237–2245.
- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Dixit, A. N., Reddy, K. V., Deshmukh, A. R. A. S., Rajappa, S., Ganguly, B. & Chandrasekhar, J. (1995). *Tetrahedron*, **51**, 1437–1448.
- Guru Row, T. N. & Parthasarathy, R. (1981). J. Am. Chem. Soc. 103, 477-479.
- Hamilton, W. C. & LaPlaca, S. J. (1964). J. Am. Chem. Soc. 86, 2289-2290.
- Mahata, P. K., Syam Kumar, U. K., Sriram, V., Ila, H. & Junjappa, H. (2003). *Tetrahedron*, **59**, 2631–2639.
- Puranik, V. G., Tavale, S. S., Guru Row, T. N., Umapathy, P. & Budhkar, A. P. (1986). Acta Cryst. C42, 593–595.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Stoe & Cie (2005). X-AREA. Stoe & Cie, Darmstadt, Germany.

supplementary materials

Acta Cryst. (2012). E68, o1133 [doi:10.1107/S1600536812011282]

Methyl 2,2-dimethoxy-5,5-bis(methylsulfanyl)-3-oxopent-4-enedithioate

Mohammad Hassan Ghorbani

Comment

In preparation of α -oxoketene dithioactal (I) (Mahata *et al.*, 2003) (Fig. 1), a red-crystalline compound sometimes is derived as a byproduct of the reaction particularly, when NaH, CS₂ and CH₃I are used in excess amounts. In order to identify this compound, the red-crystals were investigated using elemental analysis and convenient spectroscopic methods. These investigations show that the byproduct should be a methyl dithioformated derivative of the α -oxoketene dithioactal (I) and it may be one of the two probable structures (II) and (III) (see Fig .1). In order to find out the exact structure of byproduct, the red-prismatic crystals were investigated using single crystal X-ray crystallography.

The molecular structure of the title compound is shown in Fig. 2 and the structure (III) is confirmed as byproduct of the mentioned reaction. In the structure of this compound, the carbonyl group, ethylenic double bond and two connected methylthio groups are coplanar (the torsion angles of C1—C2—C3—O3, S4—C1—C2—C3, C6—S4—C1—C2 and C7—S3—C1—C2 are 0.8 (3)°, -0.4 (3)°, 179.4 (2)° and 1.4 (2)°, respectively). This co-planarity not only, facilitates conjugation of the S lone pairs, the C=C, and the C=O but also, make possible the attractive S…O interaction between S4 and O3 atoms (Ángyán *et al.*, 1987). Due to this attraction the intramolecular S4…O3 non-bonded distance [2.726 (2) Å] is shorter than the sum of the corresponding van der Waals radii (3.25 Å) and the molecule adopts s-*trans/s-cis* conformational arrangement for S4—C1 and C2—C3 bonds, respectively (Ángyán *et al.*, 1985; Dixit *et al.*, 1995). Of course, the s-*cis* orientation about the C2—C3 bond minimizes unfavourable steric interaction between S4 and the methyl groups centred on C8 and C9 which is present in the other possible conformation. In this geometry, the arrangement of three atoms C6—S4…O3, like similar part in another molecules (Dixit *et al.*, 1995; Ángyán *et al.*, 1987; Hamilton & LaPlaca, 1964), is almost linear (the measure angle of C6—S4—O3 is 178.5 (1)°).

In the molecule, the bond length of CH_3 —S4 (1.813 (4) Å) is slightly longer than the similar CH_3 —S3 bond (1.784 (3) Å). In addition to a short distance between non-bonded atoms S4 and O3, this observation shows that the intramolecular S…O interaction, might be responsible for lengthening the C6—S4 bond length in the molecule.

In the crystal, molecules are linked into centrosymmetric dimers *via* weak intermolecular C—H···O and S···S interactions [intermolecular S···S distance is 3.405 (3)Å] (Fig. 3). These dimers are linked by further weak C—H···O interactions into columns along the *a* axis.

Experimental

The title compound was produced as a byproduct of the reaction of synthesis of α -oxoketene dithioactal (I) (Mahata *et al.*, 2003), when NaH, CS₂ and CH₃I were used in excess amounts. The melting point of the title compound is 392-394K. The suitable single crystals for X-ray analysis were obtained from ethyl acetate solution at room temperature.

Refinement

All hydrogen atoms were positioned geometrically with C—H distances = 0.93-0.96 Å and included in a riding model approximation with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$. A rotating group model was applied to the methyl groups.

Computing details

Data collection: *X-AREA* (Stoe & Cie, 2005); cell refinement: *X-AREA* (Stoe & Cie, 2005); data reduction: *X-AREA* (Stoe & Cie, 2005); program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008) and *PLATON* (Spek, 2009).

Figure 1

Reaction scheme and possible products.

Figure 2

The molecular structure of the title compound, showing 50% probability displacement.

Figure 3

View of the centrosymmetric unit cell, with the short intermolecular S \cdots S contact as red dotted line and C--H \cdots O interactions as blue dashed lines. The rest contacts have been omitted for clarity.

Methyl 2,2-dimethoxy-5,5-bis(methylsulfanyl)-3-oxopent-4-enedithioate

Crystal data	
$C_{10}H_{16}O_3S_4$	Z = 2
$M_r = 312.47$	F(000) = 328
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.377 {\rm ~Mg} {\rm ~m}^{-3}$
Hall symbol: -P 1	Mo $K\alpha$ radiation, $\lambda = 0.71069$ Å
a = 7.114 (5) Å	Cell parameters from 6660 reflections
b = 10.404 (5) Å	$\theta = 1.8 - 28.5^{\circ}$
c = 11.151 (5) Å	$\mu = 0.62 \text{ mm}^{-1}$
$\alpha = 70.426 \ (5)^{\circ}$	T = 291 K
$\beta = 88.549 \ (5)^{\circ}$	Block, orange
$\gamma = 76.081 (5)^{\circ}$	$0.35 \times 0.25 \times 0.12 \text{ mm}$
V = 753.4 (7) Å ³	

Data collection

Stoe IPDS II Image Plate	$T_{\min} = 0.927, T_{\max} = 1.000$
	8030 measured reflections
Radiation source: fine-focus sealed tube	4016 independent reflections
Graphite monochromator	2376 reflections with $I > 2\sigma(I)$
Detector resolution: 0.15 pixels mm ⁻¹	$R_{\rm int} = 0.036$
ω scans	$\theta_{\text{max}} = 29.2^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$
Absorption correction: multi-scan	$h = -9 \rightarrow 8$
[MULABS (Blessing, 1995) in PLATON (Spek,	$k = -14 \rightarrow 11$
2009)]	$l = -15 \rightarrow 15$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.037$	H-atom parameters constrained
$wR(F^2) = 0.085$	$w = 1/[\sigma^2(F_0^2) + (0.0464P)^2]$
S = 0.81	where $P = (F_0^2 + 2F_c^2)/3$
4016 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
160 parameters	$\Delta \rho_{\rm max} = 0.29 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.35 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXTL</i> (Sheldrick 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.098 (4)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.73599 (10)	0.20993 (7)	0.01253 (5)	0.0735 (2)	
S2	0.42779 (7)	0.09542 (6)	0.16747 (5)	0.05140 (15)	
S3	1.01352 (9)	0.53934 (5)	0.25872 (6)	0.06605 (19)	
S4	0.64728 (11)	0.49989 (6)	0.37727 (7)	0.0726 (2)	
01	0.68814 (17)	-0.01078 (11)	0.36259 (10)	0.0372 (3)	
02	0.96657 (17)	0.04619 (12)	0.26878 (12)	0.0408 (3)	
03	0.5813 (2)	0.25685 (14)	0.36536 (15)	0.0587 (4)	
C1	0.8446 (3)	0.43725 (18)	0.29937 (17)	0.0441 (4)	
C2	0.8648 (3)	0.31478 (17)	0.27448 (17)	0.0413 (4)	
H2A	0.9721	0.2856	0.2321	0.050*	
C3	0.7282 (3)	0.22942 (17)	0.31072 (16)	0.0375 (4)	
C4	0.7663 (2)	0.09135 (16)	0.27575 (15)	0.0334 (4)	
C5	0.6516 (3)	0.13253 (17)	0.14738 (16)	0.0389 (4)	
C8	0.7610 (3)	-0.0573 (2)	0.49293 (17)	0.0560 (5)	
H8A	0.6878	-0.1188	0.5459	0.084*	

HOD	0 = 400	0.0000	0 5100	0.00.4*
H8B	0.7489	0.0228	0.5198	0.084*
H8C	0.8951	-0.1068	0.5003	0.084*
C10	0.3143 (4)	0.1743 (3)	0.0087 (2)	0.0780 (8)
H10A	0.1804	0.1711	0.0115	0.117*
H10B	0.3792	0.1234	-0.0443	0.117*
H10C	0.3226	0.2705	-0.0256	0.117*
C9	1.0298 (3)	-0.0851 (2)	0.2456 (2)	0.0613 (6)
H9A	1.1668	-0.1037	0.2344	0.092*
H9B	0.9620	-0.0795	0.1699	0.092*
H9C	1.0029	-0.1597	0.3169	0.092*
C6	0.6874 (5)	0.6611 (3)	0.3888 (3)	0.0985 (10)
H6A	0.5826	0.7025	0.4307	0.148*
H6B	0.6935	0.7258	0.3048	0.148*
H6C	0.8074	0.6404	0.4371	0.148*
C7	1.1925 (4)	0.4482 (2)	0.1811 (3)	0.0852 (9)
H7A	1.2948	0.4960	0.1584	0.128*
H7B	1.1343	0.4456	0.1055	0.128*
H7C	1.2449	0.3538	0.2377	0.128*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
S 1	0.0834 (5)	0.0964 (5)	0.0390 (3)	-0.0415 (4)	0.0117 (3)	-0.0079 (3)
S2	0.0411 (3)	0.0690 (3)	0.0499 (3)	-0.0187 (2)	-0.0013 (2)	-0.0237 (2)
S3	0.0678 (4)	0.0399 (3)	0.0965 (4)	-0.0292 (3)	0.0069 (3)	-0.0199 (3)
S4	0.0997 (5)	0.0515 (3)	0.0917 (4)	-0.0384 (3)	0.0445 (4)	-0.0454 (3)
01	0.0419 (7)	0.0372 (6)	0.0357 (6)	-0.0189 (5)	0.0029 (5)	-0.0103 (5)
O2	0.0325 (7)	0.0375 (6)	0.0579 (8)	-0.0118 (5)	0.0069 (5)	-0.0215 (5)
O3	0.0575 (9)	0.0548 (8)	0.0845 (10)	-0.0257 (7)	0.0302 (8)	-0.0437 (8)
C1	0.0525 (12)	0.0352 (9)	0.0463 (10)	-0.0178 (8)	0.0009 (8)	-0.0107 (8)
C2	0.0442 (10)	0.0342 (9)	0.0492 (10)	-0.0157 (8)	0.0052 (8)	-0.0148 (8)
C3	0.0400 (10)	0.0349 (8)	0.0426 (9)	-0.0127 (7)	0.0045 (8)	-0.0172 (7)
C4	0.0352 (9)	0.0324 (8)	0.0376 (9)	-0.0145 (7)	0.0062 (7)	-0.0144 (7)
C5	0.0448 (10)	0.0384 (9)	0.0380 (9)	-0.0142 (8)	0.0055 (8)	-0.0162 (7)
C8	0.0655 (14)	0.0600 (12)	0.0385 (10)	-0.0258 (11)	-0.0055 (9)	-0.0037 (9)
C10	0.0661 (16)	0.1023 (19)	0.0638 (15)	-0.0090 (14)	-0.0242 (12)	-0.0321 (14)
C9	0.0508 (13)	0.0486 (11)	0.0964 (17)	-0.0121 (10)	0.0180 (12)	-0.0407 (11)
C6	0.156 (3)	0.0589 (14)	0.117 (2)	-0.0552 (17)	0.061 (2)	-0.0600 (16)
C7	0.0551 (14)	0.0504 (13)	0.144 (3)	-0.0216 (11)	0.0270 (15)	-0.0208 (15)

Geometric parameters (Å, °)

S1—C5	1.6264 (19)	C4—C5	1.542 (2)	
S2—C5	1.719 (2)	C8—H8A	0.9600	
S2-C10	1.800 (2)	C8—H8B	0.9600	
S3—C1	1.744 (2)	C8—H8C	0.9600	
S3—C7	1.784 (3)	C10—H10A	0.9600	
S4—C1	1.740 (2)	C10—H10B	0.9600	
S4—C6	1.814 (2)	C10—H10C	0.9600	
O1—C4	1.3941 (19)	С9—Н9А	0.9600	

O1—C8	1.436 (2)	С9—Н9В	0.9600
O2—C4	1.398 (2)	С9—Н9С	0.9600
O2—C9	1.439 (2)	С6—Н6А	0.9600
O3—C3	1.219 (2)	C6—H6B	0.9600
C1—C2	1.367 (2)	С6—Н6С	0.9600
C2—C3	1.432 (2)	С7—Н7А	0.9600
C2—H2A	0.9300	С7—Н7В	0.9600
C3—C4	1.572 (2)	С7—Н7С	0.9600
C5—S2—C10	102.90 (11)	H8A—C8—H8C	109.5
C1—S3—C7	104.16 (11)	H8B—C8—H8C	109.5
C1—S4—C6	104.69 (12)	S2—C10—H10A	109.5
C4—O1—C8	116.18 (13)	S2—C10—H10B	109.5
C4—O2—C9	115.01 (13)	H10A—C10—H10B	109.5
C2—C1—S4	121.38 (15)	S2—C10—H10C	109.5
C2—C1—S3	123.12 (16)	H10A—C10—H10C	109.5
S4—C1—S3	115.49 (11)	H10B—C10—H10C	109.5
C1—C2—C3	122.98 (18)	O2—C9—H9A	109.5
C1—C2—H2A	118.5	O2—C9—H9B	109.5
С3—С2—Н2А	118.5	H9A—C9—H9B	109.5
O3—C3—C2	124.82 (16)	O2—C9—H9C	109.5
O3—C3—C4	116.89 (15)	Н9А—С9—Н9С	109.5
C2—C3—C4	118.28 (16)	H9B—C9—H9C	109.5
O1—C4—O2	112.90 (13)	S4—C6—H6A	109.5
O1—C4—C5	105.88 (13)	S4—C6—H6B	109.5
O2—C4—C5	113.20 (14)	H6A—C6—H6B	109.5
O1—C4—C3	111.57 (14)	S4—C6—H6C	109.5
O2—C4—C3	107.27 (13)	H6A—C6—H6C	109.5
C5—C4—C3	105.87 (13)	H6B—C6—H6C	109.5
C4—C5—S1	121.73 (14)	S3—C7—H7A	109.5
C4—C5—S2	112.04 (12)	S3—C7—H7B	109.5
S1—C5—S2	126.14 (11)	H7A—C7—H7B	109.5
O1—C8—H8A	109.5	S3—C7—H7C	109.5
O1—C8—H8B	109.5	H7A—C7—H7C	109.5
H8A—C8—H8B	109.5	H7B—C7—H7C	109.5
O1—C8—H8C	109.5		
C6—S4—C1—C2	179.44 (18)	O3—C3—C4—O1	-30.0(2)
C6—S4—C1—S3	0.46 (16)	C2—C3—C4—O1	151.22 (14)
C7—S3—C1—C2	1.4 (2)	O3—C3—C4—O2	-154.10 (16)
C7—S3—C1—S4	-179.66 (13)	C2—C3—C4—O2	27.09 (19)
S4—C1—C2—C3	-0.4 (3)	O3—C3—C4—C5	84.76 (19)
S3—C1—C2—C3	178.45 (13)	C2—C3—C4—C5	-94.06 (18)
C1—C2—C3—O3	0.8 (3)	O1—C4—C5—S1	-160.45 (12)
C1—C2—C3—C4	179.49 (16)	O2—C4—C5—S1	-36.26 (19)
C8—O1—C4—O2	60.83 (19)	C3—C4—C5—S1	80.98 (17)
C8—O1—C4—C5	-174.79 (15)	O1—C4—C5—S2	22.77 (16)
C8—O1—C4—C3	-60.07 (19)	O2—C4—C5—S2	146.96 (11)
C9—O2—C4—O1	52.8 (2)	C3—C4—C5—S2	-95.80 (14)

supplementary materials

C9—O2—C4—C5	-67.44 (19)	C10—S2—C5—C4	172.39 (14)
C9—O2—C4—C3	176.15 (15)	C10—S2—C5—S1	-4.21 (16)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D··· A	<i>D</i> —H··· <i>A</i>
C6—H6 <i>A</i> ···O3 ⁱ	0.96	2.64	3.523 (3)	153
C7—H7 <i>C</i> ···O3 ⁱⁱ	0.96	2.61	3.276 (4)	127
C8—H8A····O3 ⁱⁱⁱ	0.96	2.64	3.575 (3)	164

Symmetry codes: (i) -*x*+1, -*y*+1, -*z*+1; (ii) *x*+1, *y*, *z*; (iii) -*x*+1, -*y*, -*z*+1.